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The Engquist filter {s implemented within the one-dimensional
Lagrangian gas dynamics code HAROLD. The conservation version
and the total variaticn diminishing version of the filter are combined
as proposed in the original paper, with filtering performed in charac-
teristics space. The present results show that the filter performs well
inthe Lagrangian system for very strong shocks. A new treatment of
the wall boundary reflection for strong shocks that takes advantage
of the filter is presented. Reflected shocks calculated using this
technigue show essentially no overshoots typical of classical finite-
difference codes. These results show promise in applying the filter
and the characteristics scheme to more complicated gas dynamics
problems not only because of the high quality of the solutions, but
also because the additional run time incurred due to the filter is
minimal. Furthermore, it follows that older codes formulated using
second-order finite difference methods utilizing artificial viscosity
can be converted into accurate, modern tools with a high potentiat
for parallelizability. ®© 1995 Academic Press, Inc.

1. INTRODUCTION

The period from the mid 1970s through the late 1980s may
be considered as one of the most important periods in the
development of advanced numerical methods for solving the
nonlinear system of conservation laws in gas dynamics. This
is the period during which most of the ideas, set out to change
the basic approach to shock capturing consisting of classical
finite-difference methods combined with the use of artificial
viscosity [1], came to fruition. The deficiencies associated with
the classical finite-difference schemes resuit in either sharp
shocks with spurious oscillations as seen, for example, in the
Lax—Wendroff schemes, or smeared shocks for which the arti-
ficial viscosity (added, or naturally presented) causes permanent
loss of information, as in the basic first-order Godunov methods.
Most of the “*higher-order’” numerical methods put forth during
this period are capable of producing sharp shocks with very little

Gibbs oscillation for one-dimensional shock tube problems,
and they have been extended (with some difficulty) to higher-
dimensional problems of greater complexity. They include:
flux-corrected transport (FCT) [2], total variation diminishing
(TVD) [3], and the piecewise-parabolic method (PPM) [4].
Although the genesis of these schemes is quite different, the
mgin idea behind them is the same: to introduce judicious
amounts of dissipation at chosen spatial locations at or near
the shock front to reduce the magnitude of, or eliminate, the
spurious oscillations without smearing the shock. In general,
these schemes do not allow oscillations at the shock, and for
this reason, they reduce to first order (or even zeroth order) at
the shock, even though the underlying basic numerical scheme
may be as high as third order. By allowing a small amount
of oscillation at the shock front, the subsequently proposed
essentially nonoscillatory (ENO) scheme [5] can achieve (g —
1™ order of accuracy at the shock for a ¢"-order scheme.
The number of schemes of the above-mentioned sort that
have been introduced in recent years has been truly overwhelm-
ing, and we shall not attempt a thorough review in the present
paper. But because of this great variety of available shock-
capturing methods it is important to recognize the factors that
should be considered in selecting one for application to any
specific class of problems. First, it is well known that most
TVD schemes, even if cleverly implemented, will result in at
feast a factor of two increase in CPU time, and as much as
an order of magnitude increase if not well implemented, in
coniparison with finite-difference methods employing simple
artificial viscosity approaches. ENO schemes generally require
more arithmetic than do TVD schemes. Second, it is difficult
{although certainly not impossible) to retrofit an existing code
with one of the new higher-order methods, so it is often better
to construct a new code. This, however, imposes additional
code validation tasks that are, in general, very time consuming.
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Thus, development of a completely new code represents a sig-
nificant investment of resources. Within this context, the nonlin-
ear Engquist filter [6], and the subsequently proposed ENO
filters [71, offer an intcresting alternative. Engquist et al. ob-
served that judicious amounts of dissipation introduced at a
few chosen spatial locations at or near a shock can be achieved
by a simple filter, implemented in conjunction with a finite-
difference code as a postprocessing step. The increase in run
time as a result of the filter should be small because, hopefully,
only a small number of spatial nodes need to be corrected.
Compared to the higher-order codes {2—4], this technique has
to be less costly, In principle, the filter can be applied to results
from any existing higher-order scheme. A simple inexpensive
screening routine can then be used ag each time step to determine
which nodes need to be corrected. As already hinted, the screen-
ing (seeking nonphysical local extrema) and the corrections
can be easily implemented in existing codes. We comment that
each of these points has been demonstrated in [6] for relatively
simple one- and two-dimensional problems in an Eulerian refer-
ence frame.

The objective of this paper is to demonstrate that the Engguist
filter can be implemented in a straightforward way in the old
HAROLD ({8] code (vintage 1967). HAROLD was the first
code used to compute airblasts from nuclear explosions. We
wish to emphasize that there are three key aspects of this study
that are new and, to the authors” knowledge, have not previously
been described. These are; (1) application of the Engquist filter
in the context of a Lagrangian formulation of the equations of
motion; (2) treatment of problems involving very strong (by
aerodynamic standards) shock overpressure =0.1 GPa shocks;
and (3) modification of the method to permit calculation of
these strong shocks undergoing reflection at a solid boundary.

For the purpese of this paper we will limit our discussion to
the gas dynamics problem, although HAROLD was originally
formulated for modeling the radiation hydrodynamics of
shocked air created by a nuclear exploston. The problem includ-
ing radiation is the subject of another endeavor. In the following
sections, we will first present the basic equations solved in
HAROLD without the radiation term, followed by the character-
istics analysis employed for the system version of the Engquist
filter. Then we will discuss the difference equations and the
artificial viscosity used in HAROLD, We next present the algo-
rithm corresponding to our version of the Engquist filter and
a treatment of shock reflection at a solid wall boundary, taking
advantage of the properties of the filter. Finally, we present
and discuss the results of this study. While the methods utilized
in HAROLD are well known, we feel that it is advantageous
to provide a complete, self-contained treatment in this paper; but
the basic material will be presented here in abbreviated form.,

2. ANALYSIS

As mentioned in the Introduction, HAROLD is a radiation
hydrodynamics code that solves the one-dimensional Lagran-
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gian form of the conservation equations in spherical and planar
geometry. For the purpose of this paper we are interested in
the planar version of HAROLD without the radiation. Our
nomenclature is the same as that of the original report for
HAROLD [8]. To develop the local characteristics required to
implement the Engquist filter for systerns we start from the
planar Lagrangian equations

oR
y=2 1
=3 m
u_ 28 @
dr  am
ol av
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dt at )

Here V is the specific volume, R is the distance, i is the velocity,
P is the pressure, [ is the internal energy, m is the mass, and
¢ is the time. The equation of state is that of a gamma-law gas
with y = 1.4

The initial and boundary conditions are

V(R,0) =V,
u(R,0) = 0, 4)
P(R,0) = Py,

with V; = 909.1 cm’/g and Py = 9.275 X 107" GPa for all R,
and for ¢+ > 0 a pressure P, is applied at the left boundary
(R). ie.,

P(R;, 1) = Py. (3

For the case of shock reflection, a wall boundary condition is
imposed at the right boundary (R = 1.45 m for the case pre-
sented in Section 4.0):

u(R.,t)=10. (6)

For the system of Egs. (1}, (2), and (3) we define the independent
variable vector U and the flux vector F as

» — ¥ ]
L/ 2
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where p = |/V and E is the total energy. The associated acoustic
matrix is
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The eigenvalues A;, i = 1, 2, 3, for A are 0, and *pe, with ¢
being the sound speed, in agreement with Courant and
Friedrichs [9]. The corresponding eigenvectors are given by

[A - AJle = 0. (9)

In our computations A is an extended form of the Roe matrix
[10] to Lagrangian systems. We observe that the third compo-
nent of the flux vector F, F,, is the negative of the product
F\F,. Hence, the jump condition for £; can be represented by
AF, and AF, exactly, while the physical quantities needed to
evaluate AF, and AF, are Roe averaged.

3. NUMERICAL ANALYSIS

In this section we provide details of the numerical methods
employed in this study. We begin by presenting the finite-
difference discretizations of Eqs. (1) through (3), as they have
been employed in HAROLD. We then discuss the basic exten-
sions we have made to the Engquist filter and provide a detailed
analysis of our treatment of shock refiections in the context
of our basic filter, in particular noting subtle aspects of the
implementation that have not been addressed by previous au-
thors. We then present the pseudo-language algorithm for im-
plementing this procedure.

3.1. Difference Equations in HAROLD

For completeness we present the second-order accurate finite
difference equations vsed in HAROLD. They are

RIM—RE

atl
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iy
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(V{!—Ifz - ijlh)a J = 21 39 ---sjmajp (12)
where
Amj = %Amjﬂfl + %Amj—llb (13)
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FIG. 1. Staggered centered difference grid for Lagrangian HAROLD code.

Ar = AR 4 LA, (14)
Rerl — R}V + u;ri—ll! Atn+ll'2‘ (15)
and the artificial viscosity (the so-called quadratic Q) is
C Am (Vi — Vi)
ernlf'? = (16)

(Vi + VL) A2y

for V"*!' < V" zero otherwise. Note that there is a linear Q
option in HAROLD, but we have not used it in the present
study. Figure I shows the staggered grid used in HAROLD.

3.2. The Engquist Filter

QOur version of the nonlinear filter is an extension of Eng-
quist’s algorithm 4.1 [6] which has the conservative property
only. We extended Engquist’s algorithm 4.1 to include a TVD
property in the characteristic variables, but as mentioned in [6],
this method of implementation does not guarantee the TVD
property for the physical variables. On the other hand, the cost
of using a full TVD filter is substantially higher. Therefore, we
have chosen to implement a “*semi-TVD’* version of the filter
and to perform a set of numerical experiments to study its
performance. Generally, the filter has performed well. Occa-
sionally, however, we do encounter cases where the TVD prop-
erty in the physical variables is violated; namely, pressure over-
shoots are obtained after the physical variables are processed
by the filter. These increases are typically so small that they
usually vanish during the next few timesteps, but in some
cases associated with shock reflections they persist at very
low amplitude. In addition to this we have incorporated vector
versions of the Engquist et al. [6] scalar algorithms for removing
plateaus and “‘zigzags,”” and we have implemented a treatment
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F1G.2. Typical overshoot in reflected pressure in HAROLD; the theoretical
reflected pressure is 0.795480401556 GPa.

to handle shock reflections at solid boundaries. In the following
subsections we will present a fairly detailed treatment of the
last of these, namely the shock reflection problem, and briefly
discuss the other items in the course of providing some explana-
tory notes associated with the pseudo-language algorithm for
the complete procedure.

3.2.1. Treatment of Shock Reflection at a Wall

Both the conservation form and the TVD form of the Engquist
filter are designed to smooth out oscillations arising from the
Gibbs phenomenon at a jump discontinuity. We might expect
that the oscillations with wavelengths of the order of the grid
spacing would be filtered, but those with long wavelengths, on
the order of several grid spacings would be unaffected by the
filter. Indeed, Shyy et al. [11] recently reported a study of the
development of numerical oscillations and their interaction with
the conservative filter. They concluded that spurious oscilla-
tions with wavelengths larger than twice the grid cannot be
removed by the filter.

We have taken advantage of this property of the filter in our
treatment of the wall reflection. It is well known that finite
difference techniques applied to a shock reflection generally
produce a pressure overshoot that remains in the solution even
when the reflected shock is tens of grid points away from the
wall. The overshoot in HAROLD is typically about 15% higher
than the value of the analyticai solution, as displayed in Fig.
2. Our strategy is to reduce the artificial viscosity at the wall
to the extent that larger-amplitude (~20%}), higher-frequency
oscillations are produced, thus leading to short-wavelength spa-
tial oscillations. These oscillations will propagate away from
the wall following the reflected shock, and we then use the
filter to eliminate these short-wavelength oscillations.

In the finite difference formulation, the pressure overshoot
is caused by two numerical artifacts. The first one is the gradual
pressure increase in front of the shock (cf. parts a of Figs. 3
and 4 below). When this gradual rise reaches the wall, it reflects
to a higher pressure, changing the condition at the wall before
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the arrival of the peak value associated with the actual shock.
The second effect has to do with the artificial viscosity at the
wall when the shock approaches. It is well known [1] that in
the region just ahead of the first peak where the rise in pressure
is very sharp, the artificial viscosity is much larger than the
pressure. Before the first peak of the shock reaches the wall,
this region of sharp rise delivers a large amount of artificial
viscosity to the Lagrangian zone adjacent to the wall. We can
see the specific cause of this overshoot by rewriting Eq. (12)
at the wall cell

wa = Eba + 3(Pial + Pl + 200V — Vith, (D
and the equation of state
PW& Vwa
Epu = ~2m—5 (18)

_1’

where subscript “‘wall’’ denotes the zone adjacent to the wall.
When the region of sharp rise arrives at the wall Q741? is much
larger than (P2} + P2.,)/2, causing %3 to experience a non-
physical overshoot, and from Eq. (18) so also will P, . Several
time steps later, Py, — ij_ 12 becomes so large that it reverses
the velocity Z (the node adjacent to the wall) via Eq. (11)
causing a drop in P,,; as well as an increase in V,,;. This drop
in P,y causes a mild velocity reversal and the process repeats.
Asu; ) approaches zero, P,y also stabilizes while the reflected
shock propagates away from the wall. Unfortunately, this over-
shoot in the pressure occurs over approximately five grid points
for most of our test problems, meaning that the filter cannot
effectively eliminate the overshoot.

There are a number of ways that one could change the wave-
length of the overshoot. The most effective way we found is
by allowing only the peak of the incident shock to reach the
wall. The sharp rise ahead of the shock is eliminated by setting
Oril%equal to —P%y in Eg. (11) for the node next to the wall
until the peak of the incident shock reaches the wall, i.e.,
Pt = Picigens - At this point, Q%17 is allowed to return to zero
according to

a-12 _— __ ==t WA
alt = —Phage Ve,

(19)
where the reflection time . is defined as the time at which
Puat = Picigent» and Aty is the time step at t,... We left the energy
equation at the wall (Eq. (17)) unchanged to ensure that the
pressure oscillations at the wall are sufficiently small to be
removed effectively by the filter. Our numerical experiments
show that somewhat more time steps are needed to complete
the reflection than might be expected simply on the basis of
satisfying a Courant condition. This is caused by a reduction
in the time step itself throughout the reflection. The long wave-
length overshoot caused by the rise to the peak pressure at the
wall and the associated artificial viscosities is converted to a
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FIG. 3. Unfiltered second-order finite difference solution from one-dimensional Lagrangian code HAROLD with proposed change in treatment of wall

reflection: (a) incident shock; and (b) reflected shock.

set of short wavelength oscillations that the filter eliminates in
the next approximately 20 time steps (the reflected shock by
this time is less than 10 grid points away from the wall).

We again emphasize that this seemingly ad hoc procedure
is designed to exploit the basic properties of the filter. As a
consequence, it is expected to be useful mainly in the context
of filter implementations such as we are treating here, and
possibly for higher-order filters discussed in [5]. Nevertheless,
as indicated in Fig. 3, some improvement can be seen even in
the basic HAROLD results without the filter.

3.2.2. Filtering Procedure

For the incident shock, the filter starts from nede 2 and
stops five nodes ahead of the node, where the largest artificial
viscosity is calculated. We call this the filter region. The front
of this region is generally eight nodes ahead of the peak of the
shock. If the length of the filter region is larger than o, the
filter will only operate on nodes 2 to (ju. — 1); i.e., we do not
permit the filter to adjust boundary values. We also note that the
finite difference solution produced by HAROLD gives specific
volumes and internal energies that are incorrect at the boundary

012 a
& 0.08
% X
9: i
=]
@
& 0.04}
o
0 s . . . N
1.32 1.36 1.40 1.44
distance, m

(even though the solution quickly becomes correct a couple of
nodes from either boundary, see Fig. 8}, thus introducing errors
into the solution through the characteristics that are routinely
employed in the filter. The fact that the specific volumes and
internal energies are incorrect at boundaries is well known, and
these discrepancies can be traced back to the errors introduced
by the artificial dissipation when the shock is at the boundary.
We handle this in the context of the filter implementation in
the following way.

As the peak of the shock approaches the wall boundary, the
nodes near that boundary will begin to move toward the watl
in a Lagrangian formulation. When the node adjacent to the
wall attains a velocity larger than 0.01 km/s we turn off the
filter until the velocity at this node drops back to below this
value after the reflection. During this time, the physical quanti-
ties exhibit rapid temporal oscillations that are not easily re-
moved by the filter because the filter is designed to handle
spatial oscillations at a fixed time rather than time-dependent
oscillations at a point in space. Thus, we simply avoid applying
the filter in situations where it cannot be effective. After the
reflection, we reverse the arrays of physical quantities such that

1.0
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pressure, GPa

0.2

1.40 1.42 1.44

distance, m
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FIG. 4. Filter applied to incident shock: (a) i’ncidcnt shock—no Gibbs oscillations but long wavelength oscillations of less than 0.5% relative amplitude;

and (b) reflected shock—oscillations less than 1.5% relative amplitude.
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the positive R direction is pointing away from the wall. Again
the filter is applied with the filter region defined in the same
way as for the incident shock. Our experience with this filter
is that it performs well when applied from behind the shock,
sweeping up to five nodes ahead of the maximum in the calcu-
lated artificial viscosity. The direction of the filter sweep must
be the same as that of the particle velocity vector.

We close this section with the pseudo-language algorithm
corresponding to our implementation of the Engquist et al.
filter. Most of the salient features of this algorithm have already
been described, but we do wish to note the implementation of
code to permit the treatment of plateaus and zigzags in the
case of systems of equations which have not been reported
previously. This is handled in a manner that is analogous to
what was done by Engquist et al [6] for the scalar case. In
particular, it enters into the correction factor &, which in the case
of systems is obtained by limiting the characteristic variables.

We also comment that the physical variable that enters the
Filter subroutine in the z-array and which, therefore, determines
which points will be filtered, differs between the incident and
reflected shock. In the former, the velocity is used to trigger
the filter, while in the reflected shock case, we found that using
the specific volume improved the results. Finally, we note that,
although the algorithm has been written specifically for the
case of only three independent variables, the extension to larger
numbers of variables is straightforward.

ArcoritiM.  (HAROLD with modified Engquist et al. fil-
ter). Assume #n time steps have been completed. To calculate
results at time level n + 1, perform the following computations.

1. Use basic HAROLD code to calculate advanced time
level results.
Doj=72 jux — 1
Ifj + 2 = jo, + 1 then
[Adjust artificial viscosity to prevent overshoots during
shock reflection]
Ouan = Qjm+l
If ij_‘ﬂ < P\ [Incident shock has not reached right
boundary] then
Q}m'('] = _ijﬂ
Qwall = Qjmax
fet = 1
At = At
clse
Q) 41 = P e el
Cua = G+
endif
endif
Calculate u;, r;, Vi_,, from Egs. (10), (11), (13} through
(15), and update Q,_;» using Eq. {(16).
enddo

+1

2. Calculate internal energy from Eq. (12) and pressure
from equation of state.
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3.  Apply Engquist et al. filter
R ™ 0
If P, ., > P, [Incident shock has reached right boundary]
then
Bt = 1
Reverse indexing of solution arrays; switch signs on
velocity between shock location and right boundary
endif
[Set length of filter region]
jpea.k =12
Jows= 5 [Entered as input]
Doj=2, juu + 1
If 20, — P; > 0 then

Joeix = ]

goto A.
endif
enddo

Al Jiter = Jpeak T Jois
If n.; = 1 [Shift reversed strings by 1 to prevent filtering
at boundary] then
Jater = Jmax T jplus - jpeak +2
endif
If i, << 0.01 then
If jier = 10 and n = O [Filter incident shock]
Call Filter (s, i, Jae)
If fher = Jmax + 1 and n = 1 [Filter reflected shock]
then
Call Filter (V, V,, jier)
Back-shift and reverse data strings; switch signs on
velocity between shock and right boundary
endif
endif

Subroutine Filter {(z, z,, n)
[Modified, “‘semi-TVD’" Engquist et al. filter]
Joip = 2
Call newndx (2., juip, I, j, 1)
Jan = §
Doj=ju,n—1
=10
If j > j,, then

Lye = 1

jsve= J

Dok=173

AP (k) = AP(k)

A9 (k) = AD(k)

enddo [£]
W e = @
Woge =
Call newndx (z, j, I, j, n)
endif
Call vmnmx (z,,, Zomins Zoauxs ! — 1, J + 1)
d, = 4G T Zpma
dl = Zn,min - Zj
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L s = sgniA,)
Al =z — 7z w =j—I+1
If A,A_ < O and (d, > 0 or d, > 0) then e | AR |
Call alpha (e, @, I — 1, j + 1) [Compute characteristic = O + W0
variables] 8 = min[|AY, (X)), 0.5 A%, (&), 8]
Do & = 1, 3 [Use &’s scalarly] Doi=1;j
A, = a¥ Vi=V, + s58el
A= al = Uy + s Seb
A(k) = A, E; = E; +5 e
A9k = A_ enddo [{]
[Remove plateaus] Do i = [, j« LApply corrections to remove zigzags]
If ALA_ << 0 then W) sve m
d =0 V,—iVi—'_z;S(iel‘k
dz =0
s = sgu(A,) = U — s el
If |A.| > |A_| then @asve
5. = |A.| B = E - 2 8]
8= A W2sue
e =+ 1 enddo [i]
Lo = + 1 enddo [k]
else Call jentr (j, )
8 = |A| endif
5_==|A+’ If 6 = O then
w =1

Call newndx (z, I — 1, Logeors Jeomeats 22) _
endif w = 1

o =j—-1+1 endif -
wz = jCOITEC[ - ICOITQC[ + l enddo [‘]]
S Return
§=min| &, s ) S
o T, Subroutine newndx (z, i, fuy, im,> 1)
& = max[8, max(d,, 4;)] [& set to machine-g]
[Add filtered transformed characteristic variables to by =
dependent variable vector to guarantee conservation] Iy =
Doi=1j Doj=i+1,n—1
Vo=V, + 58l If|z ~ g <& im=]
W= + s ety If |z, — z41| > & goto A
E = E, + s 8es; e“dqo_[}l]
enddo [i] A Doj=i—-1,2 —1

If|z — z] <& im=j

Doi=1 i [Apply corrections to platcau
correct JCOI'I’EC[ pp y p If |Zl _ Zjﬁll > 8’ goto B

region] -
V=V, — s det) enddo [j]
= u, — saetli;' B. Return
B e .
. d:j Ef] ’ 583”( Subroutine YMNMNX (2, Zmins Zmuxs fns bmr)
enddo [i
Imin = &i
Eﬂdif 7 = Zt’"‘
enddo [£] .- s

Doi=1i, +1, i,
If % < Zmins Zmn = &
If Z = Zmaxs Tman = i

elseif j > j,, and A A- << 0 and A, A9, < O then
{Remove zigzags)

Call alpha (,, a_, e, { — 1,j+ 1) enddo [f]

Dok = (1], 3 Return

Ay = O:i,k

A= a¥, Function jentr (j, 1)
AR(K) = A, ji=1-1

ADEY = A_ Return
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Subroutine alpha (., a_, e, I — 1,j + 1)

[This subroutine calculates characteristic coordinates and
basis vectors corresponding to A-V), A.u;, A.E; via Egs.
(7) through (9).]

4. RESULTS AND DISCUSSION

All results to be reported herein were obtained using an
1BM RS6000 workstation running double precision Fortran 77.
Unless specifically stated to the contrary, the spatial (actually
mass in the Lagrangian system) grid contained 90 points.

We started the present study utilizing a strong (0.1 GPa)
shock that is of interest in the analysis of effects of high-energy
explosions. For this case, a number of runs were made to study
the interaction between the artificial viscosity and the filter.
Our results indicate that for strong shocks (>0.01 GPa) a small
amount of £ is needed to reduce the magnitudes of the Gibbs
oscillations to a level that can be effectively filtered. If the
amplitude of the oscilations exceeds a certain threshold, no
amount of filtering can eliminate them. (We note that this is
in accord with the remarks by Engquist et al. [6].) Our experi-
ence is that the large-amplitude, long-wavelength oscillations
(wavelength fonger than two grid spacings) will reduce in am-
plitude, but at the same time widen in wavelength to span
several grid points, forming plateaus. As pointed out by Shyy
et al. [11], these larger wavelength oscillations are transparent
to the filter. In this strong shock regime, the finite difference
solution is unable to stably evolve these low frequency plateaus
for any length of time. The computed solution usually exhibits
floating point overflow shortly after the appearance of the pla-
teaus. In such cases, a small but judicious amount of artificial
viscosity to limit the amplitudes of the initial oscillations makes
the filter much more effective. On the other hand, an excessive
amount of artificial viscosity not only reduces the sharpness of
the computed shock but also causes problems when the filter
attempts to sharpen it. In this case, the shock front first shows
a step in front of the peak. Then the entire front turns into a
staircase before the solution overflows. There is an optimal

0.12 . —_—
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0.08
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0.04}

1.40 1.44

1.36

1.32
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amount of artificial viscosity that we were able to identify in
each case 50 as to obtain the sharpest shock front but minimal
oscillation amplitudes. It should be noted that this changes from
problem to problem, and we feel it is an open question as to
whether the optimal level of artificial viscosity can be theoreti-
cally specified, a prori, or even determined adaptively.

Based on the above experience with the filter, our strategy
in computing strong shocks is as follows. First, identify the
smallest @ needed to produce a finite-difference solution with
the shock resolved in two to three nodes. The largest amplitude
of the pressure oscillation should not exceed 20% of the peak
pressure. Then apply the filter and let the filter smooth out the
oscillations and sharpen the shock.

Figure 3a shows the incident shock computed with HAROLD
without filtering for the case posed in Section 2. The left bound-
ary is at 1 m, and the right boundary is at 1.45 m. In this case,
the oscillations are approximately 3% of the peak value, but
the shock front is not very sharp. From Fig. 3b, it is clear that
with the wall boundary modified according to Section 3.3 there
is no overshoot other than the usual Gibbs oscillations in the
reflected shock. Figures 4a and b show the corresponding fil-
tered incident and reflected shock. The incident shocks are
sharpened and the oscillations removed. The amplitude of the
oscillations in the reflected shock shown in Fig. 4b is also
reduced, but not entirely eliminated. This suggests that the
larger oscillation amplitude observed in the unfiltered case (Fig.
3} is, in part, due to the oscillations in the incident shock.
Again, there is very little overshoot, but more importantly, there
are no long wavelength oscillations in the reflected shock.

Figure 5 shows the case with the filter applied to both the
incident and the reflected shock. The pressure oscillations in
the reflected shock are as small {percentage-wise) as those in
the incident shock. It is interesting to note here that the CPU
time required to compute this solution was 145 s, compared
with 102 s for a run to the same point in physical time without
the filter, representing an increase duz to the filter of less
than 50%.

Next, we conducted a convergence study and obtained a grid
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FIG. 5. Filter applied 1o both (a) incident and (b) reflected shock. Fully developed reflected shock contains long wavelength oscillations of less than 0.5%

relative amplitude.
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FIG. 6. Grid function convergence of filtered solution.

function convergence rate corresponding to first-order accuracy
in the L'-norm with respect to refinement of the mass density
grid for the incident and reflected shocks. At the shock front
the sharpest rise in pressure is usually resolved in two nodes.
In Fig. 6 we present results of these grid function convergence
tests at two different times in the calculations; part a of the
figure corresponds to the incident shock, while part b provides
similar results for the reflected shock. It is of interest to note
that both figures show a first-order convergence rate and high
resolution on the finer grid spacings, indicating that our bound-
ary treatment of the shock reflection is very effective. We
remark that for weak solutions, of the sort being computed here
and for TVD-like schemes, the best we should expect is for
the number of grid points required to capture the shock to
remain constant, independent of grid spacing, as is the case for
both the incident and reflected shock. In particular, the second-
order accuracy often quoted for TVD schemes is attained only
outside a neighborhood of any shocks that are present (ef. [5]).
In the current problem, the solution is constant away from the
shock, so our cobserved first-order accuracy in the L'-norm
simply reflects the fact that the filter has the same accuracy in
the neighborhood of the shock as would any other TVD method.
The second-order accuracy of the filter has already been demon-
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strated for problems with nonconstant, smooth solations away
from shocks by Engquist er al. [6]. This in turn implies that
as the grid is refined, shock resolution will improve. Figure 6
displays results computed with grid spacings of 0.02, 0.01, and
0.005 for the spatial domain described earlier. As can be seen,
five grid points are needed to capture the shock on all three grids.

For completeness, we show in Fig. 7 the artificial viscosity
for the zone adjacent to the wall. Figure 7a shows the amount
subtracted from the pressure at grid cell j... — 1. Before the
wall pressure reaches the magnitude of Q for the incident shock,
@ for the momentum equation is set to the negative of the
pressure at the jo., — 1 cell such that the wall, in terms of
momentum, does not experience any preconditioning by the
pressure rise ahead of the incident peak (i.e., 1L is not affected
by the finite thickness of the numerical shock). When the inci-
dent peak pressure reaches the wall, the impact generates only
high frequency oscillations at the wall, and these are converted
to short wavelength oscillations in the reflected shock. These
oscillations are then removed by the filter. The artificial viscos-
ity for the energy equation is shown in Fig. 7b. This is the
same as in Eq. (16).

Figures 8 and 9 are the corresponding specific volumes and
velocities for the filtered solution. As noted before, the specific
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FIG. 7. Artificial viscosity for zone adjacent to wall during shock reflection: (a} amount subtracted from momentumn equation to allow sharper impact by

incident shock: {b) artificial viscosity entering energy equation.
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FIG. 8. Specific volumes for corresponding pressures in Fig. 5. Note error at left boundary for incident shock (a), and error at both boundaries for reflected

shock (b).

volumes for the left and right boundaries are incorrect, but the
solution converges to the theoretical value within about two
nodes from the boundary. (We note that a characteristic treat-
ment at these boundaries would improve this, but this is not
an option in HAROLD.) This is the same for the internal energy.
The calculated velocities are very smooth, although there are
some long wavelength, low amplitude oscillations around zero
for the reflected shock. As already noted, it is not possible for
the filter to remove these. Finally, in Fig. 10 we present plots
for computations involving a 100-GPa pressure jump to demon-
strate the robustness of our approach. As can be seen, both
incident and reflected shocks are sharp with very little oscilla-
tion, even in this extreme case.

5. SUMMARY AND CONCLUSIONS

In this paper we have discussed the implementation of the
nonlinear filter, first introduced by Engquist et al. [6], in the
context of a one-dimensional Lagrangian formulation embodied
in an existing {and very old) code, and we have reported results
of successful computations of very high pressure, reflected
shocks. In summarizing this work, we wish to point out that
there are several new and significant aspects in this research,
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To the authors’ knowledge this is the first implementation of
this nonlinear filter in conjunction with a Lagrangian formula-
tion, and although this was not a particularly difficult part of
the overall problem, it did highlight the fact that usual Roe-
averaging [10] requires some modification for Lagrangian for-
mulations. Of more importance is the treatment of reflected
shocks. This has not previously been reported, at least not for
the extremely high pressure shocks treated here, and it required
that details of the behavior of the filter be taken into account.
Namely, as noted by Shyy et al. [11], the filter is only able to
remove short wavelength oscillations, so it was necessary to
employ a boundary treatment such that high-frequency, short-
wavelength oscillations are created at the boundary during the
reflection and then subsequently filtered. In addition, our imple-
mentation of the Engquist filter for systems includes portions
of the scalar filters described in [6] that remove plateau and
zigzag effects, and it also provides a partial implementation of
the requirements needed to guarantee the TVD property. To
our knowledge, this is the first such implementation.

The results of our computations show that with these modifi-
cations we are able to capture very high-pressure shocks, includ-
ing those that have undergone reflection from a solid boundary,
and do so accurately and efficiently. In particular, even in the

10
b
o Direction of _ ,._
rticle velocity
Eel P
z
m - -
* 5 Direction of
I shock propagatioen
0
1.38 1.40 1.42 1.44
distance, m

FIG. 9. Velocities for corresponding pressures of Fig. 3: (a) incident shock; (b) reflected shock.
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case of reflected shocks, the shock wave is captared in five to
seven grid points, independent of grid spacing, and the computa-
tional expense of doing this is at most only 50% greater than
that of running the basic finite difference code itself, This is
approximately a factor of 2 faster than flux modification ver-
sions of TVD (cf. [3]), in agreement with timing results pub-
lished in [6] and consistent with what one would expect from
straightforward accounting of floating-point arithmetic. In
terms of computations, this nonlinear filter in effect replaces
arithmetic operations (required in other shock capturing
schemes) with logic; and our experience has shown that for
this preblem 4 small amount of logic can eliminate a significant
amount of arithmetic and still achieve the desired numerical ac-
curacy.

We must emphasize, however, that these results are for one-
dimensional model problems. Certainly, the ultimate test for any
numerical method is application to three-dimensional problems.
While specific results along these lines will be the subject of
future reports, we feel it is worthwhile to comment at this time
that, as discussed by Engquist et al. (6], the multidimensional
implementations of the nonlinear filter are typically analogous
to time-splitting schemes. In this regard, we expect that there
may be accuracy problems to be overcome; but if this can be
accomplished, the muliidimensional nonlinear filter will be a
highly efficient shock-capturing teol because it is applied line-
by-line in each spatial direction and can thus be implemented
in an ‘‘embarrassingly’” paraliel fashion (i.e., with a number
of processors greater than or equal to the number of grid lines
running in a given direction, the total time to complete filtering
in that direction is the same as that needed to filter along the

grid line having the most points requiring filtering). This is
particularly appropriate in the context of MIMD machines hav-
ing fairly significant processing power in each CPU. Moreover,
because it is a postprocessor it should be relatively easy to
implement, even for quite complicated three-dimensional, time-
dependent codes.

ACKNOWLEDGMENT

This study is performed under the auspices of the Defense Nuclear Agency.
The first author is indebted to Dr. P. Randy Rohr of the Defense Nuclear
Agency for the support and several in-depth discussions.

REFERENCES

. ). Von Neumann and R. D. Richtmyer, J. Comput. Phys. 21, 232 (1950).

. 8. T. Zalesak, J. Comput. Phys. 31, 335 (1979).

. A. Harten, J. Comput. Phys. 49, 357 (1983).

. P Colella and P. R. Woodward, J. Comput. Phys. 34, 174 (1984).

. A, Harten and S. Osher, SIAM 1. Numer. Anal. 24, No. 2, 279 (1987).
. B. Engquist, P. Lotstedt, and B. Sjogreen, Math. Comput. 52, No. 186,
509 (1989).

. F, Lafon and S. Osher, J. Comput, Phys. 96, 110 (1991),

8. H. L. Brode, W. Asano, M. Plemmons, L. Scantlin, and A. Stevenson,
Rand Corporation Memorandum RM-5187-PR, Santa Monica, CA,
1967 (unpublished).

9, R. Courant and K. O. Friedrichs, Vol. I, Supersonic Flow and Shock Waves
(Interscience, New York, 1948).

10. P. L. Roe, J. Comput. Phys. 43, 357 (1981).
11. W, Shyy, M.-H. Chen, R. Mittal, and H. 8. Udaykumar, /. Comput. Phys.
102, 49 (1992).

ThoW Bl o =

-3



